Impairment of the autophagic flux in astrocytes intoxicated by trimethyltin.
نویسندگان
چکیده
Autophagy is a lysosomal catabolic route for protein aggregates and damaged organelles which in different stress conditions, such as starvation, generally improves cell survival. An impairment of this degradation pathway has been reported to occur in many neurodegenerative processes. Trimethyltin (TMT) is a potent neurotoxin present as an environmental contaminant causing tremors, seizures and learning impairment in intoxicated subjects. The present data show that in rat primary astrocytes autophagic vesicles (AVs) appeared after few hours of TMT treatment. The analysis of the autophagic flux in TMT-treated astrocytes was consistent with a block of the late stages of autophagy and was accompanied by a progressive accumulation of the microtubule associated protein light chain 3 (LC3) and of p62/SQSTM1. Interestingly, an increased immunoreactivity for p62/SQSTM1 was also observed in hippocampal astrocytes detected in brain slices of TMT-intoxicated rats. The time-lapse recordings of AVs in EGFP-mCherry-LC3B transfected astrocytes demonstrated a reduced mobility of autophagosomes after TMT exposure respect to control cells. The observed block of the autophagic flux cannot be overcome by known autophagy inducers such as rapamycin or 0.5mM lithium. Although ineffective when used at 0.5mM, lithium at higher concentrations (2mM) was able to protect astrocyte cultures from TMT toxicity. This effect correlated well with its ability to determine the phosphorylation/inactivation of glycogen kinase synthase-3β (GSK-3β).
منابع مشابه
Pentoxifylline Protects Against Hippocampal Damage and Memory Impairment Induced by Trimethyltin
Background: Trimethyltin (TMT) is a toxic agent that causes oxidative stress, a laboratory model for inducing hippocampal injuries. Pentoxifylline (PTX) inhibits phosphodiesterase, inflammation and oxidative stress. This study evaluated the neuroprotective effects of PTX on injuries induced by TMT in the hippocampus. Methods: Sixty male Wistar rats were divided into five groups of 12 each. Gro...
متن کاملRoyal Jelly Facilitates Restoration of the Cognitive Ability in Trimethyltin-Intoxicated Mice
Trimethyltin (TMT) is a toxic organotin compound that induces acute neuronal death selectively in the hippocampal dentate gyrus (DG) followed by cognition impairment; however the TMT-injured hippocampal DG itself is reported to regenerate the neuronal cell layer through rapid enhancement of neurogenesis. Neural stem/progenitor cells (NS/NPCs) are present in the adult hippocampal DG, and generat...
متن کاملEpigallocatechin-3-Gallate Attenuates Impairment of Learning and Memory in Chronic Unpredictable Mild Stress-Treated Rats by Restoring Hippocampal Autophagic Flux
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea with beneficial effects on the impairment in learning and memory. Autophagy is a cellular process that protects neurons from stressful conditions. The present study was designed to investigate whether EGCG can rescue chronic unpredictable mild stress (CUMS)-induced cognitive impairment in rats and whether its protective effect i...
متن کاملPartial Improvement of Spatial Memory Damages by Bone Marrow Mesenchymal Stem Cells Transplantation Following Trimethyltin Chloride Administration in the Rat CA1
Introduction: Trimethyltin Chloride (TMT) is a neurotoxin that can kill neurons in the nervous system and activate astrocytes. This neurotoxin mainly damages the hippocampal neurons. After TMT injection, behavioral changes such as aggression and hyperactivity have been reported in animals along with impaired spatial and learning memory. Hence, TMT is a suitable tool for an experimental model of...
متن کاملPAR-1 upregulation by trimethyltin and lipopolysaccharide in cultured rat astrocytes.
We have previously shown that various protease-activated receptor (PAR) isoforms, mainly PAR-1, are upregulated in reactive astrocytes of rat hippocampus following i.p. administration of trimethyltin (TMT), a neurotoxicant which is known to cause neuronal death and reactive gliosis. In the present paper, we demonstrate that this PAR-1 upregulation was also mimicked in primary cultures of neonat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurotoxicology
دوره 52 شماره
صفحات -
تاریخ انتشار 2016